
2023
06/21
当下科技行业be like...
据说现在的科技公司,不是在抢GPU,就是在往抢GPU的路上……此前4月,特斯拉CEO马斯克就购买了1万块GPU,他还称公司将继续大量购买英伟达的GPU。
在国内,近日也有报道称,字节跳动今年向英伟达订购了超过10亿美元的GPU,仅字节一家公司今年的订单,可能已接近英伟达去年在国内销售的商用GPU总和。
而在企业这边,为了“珍惜”来之不易的GPU,IT人员也在快马加鞭,他们希望能让GPU时刻忙碌,从而确保投资回报。不过有的企业可能会发现,GPU数量增加了,但GPU闲置却越来越严重。
原因何在?
别让存储成为你的
关键瓶颈
如果说HPC的历史教会了我们什么的话,那就是不能以牺牲存储和网络为代价,过分关注计算。如果存储无法以良好的性能及时将数据传输到计算单元,那么即使你手握世界上最多的GPU,也无法将其转化为效率。
IT分析公司 Small World Big Data 的分析师 Mike Matchett 表示,有些模型足够小,可以在内存(RAM)中执行,从而将更多的注意力放在计算上。但如今像ChatGPT这样的大模型,需要数十亿个节点,无法保存在内存中,因为成本太高。
“你无法在内存中存放数十亿个节点,存储变得更加重要。”Matchett 说。
一般而言,无论是怎样的用例,在模型训练的过程中都有四个共同点:
训练模型
推理应用
数据存储
加速计算
{{item.summary}}
Gartner®《备份和恢复软件解决方案的关键功能》报告出炉,戴尔科技成绩优异
{{item.summary}}
Gartner®《备份和恢复软件解决方案的关键功能》报告出炉,戴尔科技成绩优异
填写您的感兴趣的产品及个人信息,提交成功后会有专人与您沟通,为您提供专属底价。
请输入公司名称
请输入姓名
请输入手机
请输入邮箱
请选择
*验证码无效
恭喜您,秒杀成功!
后续工作人员会与您进行联系
抱歉,您没有抢到!
您还可以参与其他产品的秒杀活动哦
信息提交成功
感谢您参与我们本次的问卷调查活动
请补全您的身份信息
请输入姓名
请输入企业邮箱
请输入公司全称
请输入姓名
请输入企业邮箱
请输入公司全称
请输入企业邮箱
请输入手机号
订阅成功
我们将每月通过邮箱发送资料报告发给您
请输入手机号
请输入验证码
如果您对当前页面内容感兴趣,
可填写“项目咨询单”,
进行专业咨询及帮助。
* 点击确认按钮或关闭Cookie弹窗代表您已同意以上内容。
登录后发表评论
请输入您要写的评论